

V 1.25 04/23/20

System-on-Module (SOM) with RF analog I/O, Ultrascale+ RFSoC FPGA, 4GB Memory, QuadMesh Interlink

FEATURES

- Sixteen 12-bit A/D inputs
- Sixteen 14-bit D/A outputs
- 1000 mVp-p, direct-coupled, 50 ohm inputs
- 500 mVp-p, direct-coupled, 50 ohm outputs
- Xilinx Ultrascale+ ZU39DR RFSoC/FPGA
- · 2 Banks of 64-bit, 2GB DRAM (4 GB total)
- Ultra-low jitter programmable clock
- · External reference clock
- "Zero-phase error" external trigger
- Four, independent mesh links each providing 16 Gbps sustained transfer rates
- 4.0" x 5.0" SOM module.
- 40W typical power consumption
- · Conduction cooled via cold-plate

APPLICATIONS

- · Beam steering
- WLAN, WCDMA, WiMAX front end
- RADAR
- Medical Imaging
- High Speed Data Recording and Playback
- · IP development

SOFTWARE

- FrameWork Logic
- Petalinux Drivers
- C++ Host Tools

DAQ16 High-performance system-on-module (4"x5")

DESCRIPTION

The DAQ16 integrates sixteen (eight IQ), digitizing channels and sixteen (eight IQ) waveform generation channels with real-time signal processing on a SOM IO module for demanding, real-time DSP applications. The tight coupling of the analog I/O within the Ultrascale+ RFSoC FPGA core provides low latency, optimized for architectures such as beam-steering, SDR, RADAR, and LIDAR front end sensor digitizing and processing. The Quad Mesh system interface sustains transfer rates at 16 Gbps to four peers concurrently facilitating creation of large meshes within high performance real-time systems.

The onboard 1760-pin Xilinx ZU39DR with 4 GB external DDR4 RAM addressable as two 64-bit banks, provides a very high performance DSP core. On-chip integration of multichannel, GSPS analog IO, zero-wait SRAM block memory and quad ARM CPU cores enable real-time signal processing at extremely high rates.

The DAQ16 exposes all sixteen of the RFSoC's (6.5 GSPS-capable) D/A channels and sixteen (2.2 GSPS-capable) A/D channels. On chip mixer and interpolator/decimator capabilities (respectively) can be enabled to implement concurrent, real-time frequency conversions. Sample clocks are generated via a cascaded ultra-low-jitter onboard PLL referenced either via an onboard 10 MHz TCXO or externally-supplied reference clock. Phase aligned, synchronous sampling of all channels at full hardware rates across multiple cards is possible if supplied and external reference clock and trigger operating in the reference clock domain.

The DAQ16 can be fully customized using VHDL using the supplied board support package (BSP). The BSP provides standard IP cores for arbitrary waveform playback, and contiguous capture of ADC data of specified length (framed mode) DDR4 memory control and QuadMesh communications.

Software tools for target development include C++ libraries and drivers for Petalinux. Application examples demonstrating the module features and use are provided, including real-time, dynamic DAC waveform generation and analog captures.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Elk Solutions products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Elk Solutionsstandard warranty. Production processing does not necessarily include testing of all parameters.

This electronics assembly can be damaged by ESD. Elk Solutions recommends that all electronic assemblies and components circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device to vary from published specifications.

ORDERING INFORMATION

Product	Part Number	Description
DAQ16	024000008- <cfg>-</cfg>	SOM module with sixteen, 12-bit 2.2 GSPS A/D, sixteen 6.5 GSPS 14-bit DAC, ZU39DR Ultrascale+ RFSoC, 4GB DRAM. <cfg> is configuration: 1 - Speed grade 1 FPGA</cfg>
Single SOM carrier/breakout	024000006	Left: IsoRate8 x 4 DAC0-15, DAC16-31, ADC0-15, ADC16-31 Right: Ref, TrigIn, TrigOut, QSFP28, PL Oculink4 x 3, PS Oculink 4 x 1, uUSB slave, uUSB JTAG, USB Host, 1 GbE, 2.5mm 6-16V, Samtec 6-16V, Top: PS DIO, Bottom: PL DIO, 8"x9"
Passive heatsink	008001113	Thermal pad between RFSoC and heat spreader
Active Fansink	008001117	Thermal pad between RFSoC and fansink assembly
DAQ16 FrameWork Logic	55012	DAQ16 board support package for VHDL.

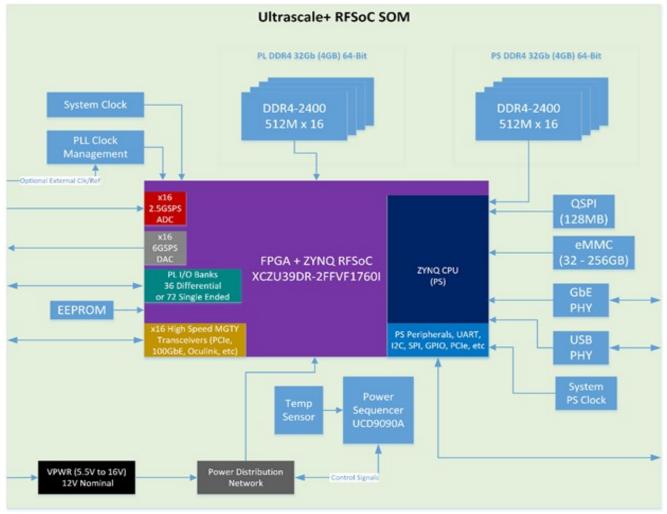


Illustration 2: Block diagram detail

Multiple-module synchronization: In order to achieve synchronous operation among multiple boards, all must be provided phase-aligned references. The reference feeds an onboard LMK04832 PLL which operates in nested zero-delay mode to guarantee it's outputs are phase aligned with the reference input. If a simple tunable oscillator were used instead, nested zero-delay mode would not be available and multi-board synchronous operation would not be possible.

The LMK can accept an external reference clock operating at up to 750 MHz. If the reference rate exceeds the FPGA SYSREF clock rate (which is limited to < 10 MHz), a phase-aligned synchronization pulse must be presented to the LMK SYNC pin to phase align the LMK outputs of all boards in the system. This is essential to phase-aligned analog I/O across modules. Elk has exposed the LMK SYNC pin from the SOM for this very purpose. If the reference clock rate is less than 10 MHz, the LMK SYNC pin may be ignored.

A low-jitter, high-stability, external reference must be supplied to all modules operating at an integer submultiple the greatest common divisor of 16 and the chosen ADC and DAC sample rates.

The onboard LMK PLL produces a lower-jitter SYSREF identical in rate and phase to EXT REF plus phase-aligned ADC sample or reference clocks. The LMK is limited to 3.02 GHz but has some coverage gaps. The onchip RF tile PLLs are automatically used if the requested ADC sample rate falls outside of the LMK coverage range. The LMX PLL can produce a sample clock covering the entire DAC operational range so it's always used to synthesize the DAC sample clock.

The diagram below is an excerpt from the LMK04832 datasheet.

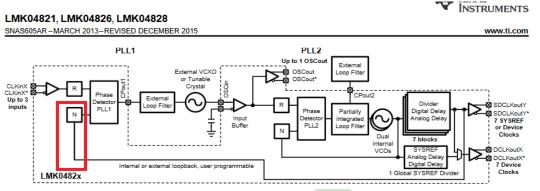


Figure 19. Simplified Functional Block Diagram for Nested 0-delay Dual Loop Mode

The LMK employs a feedback loop to insure that the output frequency (SDCLKout/DCLKout) remains synchronous to the input reference clock (CLKin). An integer divider N (highlighted) is present in the feedback path, capable of dividing the output frequency by any integer (1-8192) to match the input frequency if needed to close the feedback loop.

The LMK is used on the DAQ16 to generate the SYSREF signal used by the RFSoC as the timing reference for the ADC and DAC subsystem. Xilinx imposes the following restrictions on SYSREF:

SYSREF Signal Requirements

The SYSREF signal is the timing reference for the system and must therefore be handled correctly to ensure it does not degrade the synchronization. This signal has the following requirements.

- The SYSREF signal must be a high-quality, free-running, low-jitter square wave, to allow it to be captured consistently by the analog sample clock.
- 2. The SYSREF frequency must meet the following requirements:
 - a. If synchronizing RF-ADC and RF-DAC tiles with different sample frequencies, the frequency must be an integer submultiple of:

GCD(DAC_Sample_Rate/16, ADC_Sample_Rate/16)

- b. SYSREF must also be an integer submultiple of all PL clocks that sample it. This is to ensure the periodic SYSREF is always sampled synchronously.
- c. Less than 10 MHz.

In summary, the external reference supplied to the DAQ16 must be a sub-multiple of 16 and the chosen sample rates. If the external reference rate is greater than 10 MHz, a SYNC pulse must further be provided to all cards in the system to avoid phase indeterminacy.

Triggering: External trigger (EXT TRG) must operate in external reference (EXT REF) time domain. It must be marshaled into the external reference domain via a flip-flop that is clocked by SYSREF. This function can be performed by one of the DAQ16 cards acting as master. ADC/DAC samples flow via the RFdc core in clumps (each 8, 16 or 32 samples (user-defined)), at an LMK-generated FSCLK rate of 200-400 MHz. Consequently, the synthesized multi-board synchronous trigger must reliably fall within a 1/FSCLK window on all cards, which is readily achievable.

Elk Solutions • phone 805.334.0314 • www.elkengineering.com

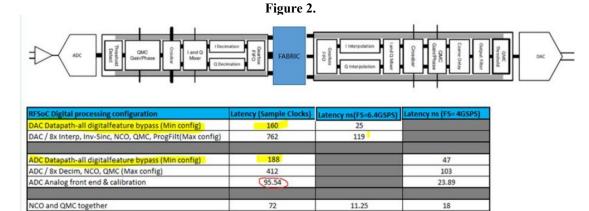
Standard Features

Analog Inputs		Analog Outputs	8
Channels	16	Channels	16 channels
Range	700 mVp-p (typical)	Range	700 mVp-p (typical)
Туре	Differential	Туре	Differential
Coupling	DC	Coupling	DC
Impedance	50 ohm (typical)	Impedance	50 ohm (typical)
A/D Device	RFSoC internal	D/A Device	RFSoC internal
Resolution	12-bit	Resolution	14-bit
Sample Rate	100-2200 MSPS.	Sample Rate	100-6500 MHz.
Impedance	50 ohm +/- 1 ohm	Impedance	50 ohm +/- 1 ohm
Prog. Bias	N/A	Prog. Bias	N/A
FIFO size	128K for each active channel	FIFO size	128K for each active channel
Data transfer	RFdc driver	Data transfer	RFdc driver
Connectors	Samtec SEAM8 30x8 female	Connectors	Samtec SEAM8 30x8 female
Clocking	All ADCs synchronous. Integer fraction of DAC rate.	Clocking	All DACs synchronous. Integer multipl of ADC rate.

Standard Features

Analog Trigger In		
Source	SEAM40 connector, Software	
Functions	Start Trigger, Start Frame	
Source Level	0-3.3V, active at 1.8V typical	
Modes	Edge, Level	
Pulse width	6 min, 50 max (nS)	
Accuracy	+/- 0 samples when trigger source and reference clock in same domain	
Impedance	50 +/- 1 ohm	
Coupling	DC	
Protection (power on, off)	+/- 4V, +/- 2V	
Impedance	1 Mohm	
Latency	Assert trigger on following SYSREF edge	

Phase Locked Loop		
Number of PLLs	3	
Tuning resolution/ restrictions	ADC: See LMK04832 datasheet DAC: See LMX2594 datasheet	
Reference Frequency	10-100 MHz. 3.3V CMOS signal levels.	
Reference Source	SEAM40 HD connector pin or onboard osc	
Clock Sources	Ext. or Int. TCXO	
	External Inputs: 0 dBm nominal AC- coupled, 50-ohm terminated, SMA	
Jitter	Internal: <100 fs rms	
Channel Clocking	All channels are synchronous	
Multi-card Synch	Must phase lock to external 10-100 MHz system reference (SYSREF) using nest 0- delay mode. 3.3V CMOS signal levels.	


Analog Trigger OUT		
Source	SEAM40 connector, Software	
Functions	Start Trigger, Start Frame	
Source Level	0-1.8V	
Modes	Pulse	
Pulse width	6 min, 50 max (nS)	
Impedance	50 +/- 1 ohm	
Coupling	DC	
Impedance	50 ohm	

Standard Features

FPGA	
Device	Xilinx Ultrascale+ RFSoC XCZU39-1FFVG1760E or I. See Xilinx document DS889 v1.8, Table 9 for environmental options
Speed Grade	-1 (extended temp)
System Logic Cells	930,000
CLB LUTs	425,000
Maximum Distributed RAM (Mb)	13
Block RAM (Mb)	38
UltraRam (Mb)	22.5
GTY Transceivers	16 (all exposed to carrier)
Configuration	Two Micron MT25QU512ABB8E12-0SIT TR QSPI flash EEPROM. JTAG during development

Memories	
DRAM Size	4 GB total 8 devices @ 256Mb x16 each
DRAM Type	DDR4 DRAM
DRAM Controller	Controller for DRAM implemented in logic. Each 64 bit interface uses 2.5 FPGA I/O banks, 10@ 13 bit FPGA I/O Byte lanes (4 per bank).
Total DRAM Bandwidth	38.4GB/s maximum bandwidth (100% data bus efficiency, applications' efficiency varies)

Flash Disk	
eMMC Size	Sandisk 'SDINBDG4-32G-XI1 device provides 32 GB of NV storage.

360

200

96

16

RFSoC Latency	operating at uniform	n 1 GSPS
Iti SUC Latency (per anns at unitor n	II GOLD

56.25

31.25

15

2.5

Decimation or Interpolation x8

Decimation or Interpolation x4 Decimation or Interpolation x2

Decimation or Interpolation bypass

90

50

24

4

Standard Features

Monitoring	
Alerts	Firmware-specific. Typically, Trigger Start, Trigger Stop, Queue Underflow, Timestamp Rollover, Temperature Warning and Failure. 32-bit counter with rollover and resolution is 1 analog sample.

Digital IO	
Number of pins	72
Signal Standards	FPGA 1.8V HIGH RANGE (LVCMOS18 default see Xilinx select IO user guide UG571) DIO routed as differential pairs
Connector	Samtec SEAM8 connector

Power		
Consumption	5.5-16Vdc (45 Watts typical)	
Temperature Monitor	Software with programmable alarms	
Over-temp Monitor	Disables power supplies	
Power Control	Channel enables and power up enables	
Heat Sinking	Conduction cooling to chassis coldplate or heatsink	

Physicals	
Form Factor	Custom
Size	101x127mm
Weight	156g
Hazardous Materials	Lead-free and RoHS compliant

SoC I/O	
Ethernet (1 GbE)	Signals upstream of phy on carrier
USB	1 root, 1 slave
MGT	8 x 25 Gbps
JTAG	14 pin JTAG (2mm pitch on carrier)
Connector	Samtec SEAM8 connector

Analog Performance At 24C ambient.			
Parameter	Тур	Units	Notes
A/D Performance – AC coupled			
Analog Bandwidth	3000	MHz	-3dB.
SFDR	83 75	dBc	71 MHz sine input, 95%FS, Fs = 4.0 GSPS 220 MHz sine input, 95%FS, Fs = 4.0 GSPS
S/N	56	dBFS	170 MHz sine input, 98%FS, Fs = 1.0 GSPS
SINAD	57	dBFS	170 MHz sine input, 95%FS, Fs = 1.0 GSPS
ENOB	9.3	bits	170 MHz sine input, 98%FS, Fs = 1.0 GSPS
Channel Crosstalk	-55	dB	Typical @ -1 dBm, 2.26 GHz CW sine (aggressor) on adjacent channel and Fs = 1966.08 MSPS
Noise Density	-132	dBm/Hz	Input grounded, Fs = 1.0 GSPS, 64K sample FFT, non-averaged
Gain Error	<1%	% of FS	Calibrated
Offset Error	<1	mV	Calibrated
DAC Performance – AC Coupled	1		
Analog Bandwidth	3000	MHz	-3 dB
SFDR	78 70	dBc	71 MHz @ -9 dBFS, 1000 MSPS sample rate 170 MHz @ -9 dBFS, 1000 MSPS sample rate
IMD	-80 72	dBc	71 MHz @ -9 dBFS, 1000 MSPS sample rate 170 MHz @ -9 dBFS, 1000 MSPS sample rate
ENOB	9.5	bits	71 MHz sine output, AC coupled
Noise spectral density	-145	dBm/Hz	170 MHz @ 0dBFS, 1000 MHz sample rate
Channel Crosstalk	-55	dB	Aggressor = 710 MHz, -1 dBfs adjacent channel
Gain Error	<1 %	% of FS	Calibrated
Offset Error	<500	μV	Calibrated

Architecture and Features

The DAQ16 module architecture incorporates a Ultrascale MPSoC system-on-chip which incorporates quad ARM processors and dual real-time coprocessors, FPGA computing core, on chip RF analog I/O and Aurora QuadMesh core. These resources are integrated with external DDR4 external memories, ultra-low jitter programmable sample clock, boot flash and power management. The resulting architecture tightly couples the programmable FPGA fabric for real-time signal processing to the RF analog I/O with low latency and extremely high rates.

Analog IO

The ZCU39 RFSoC device provides sixteen A/D and D/A channels internally. All A/D D/A channels are exposed via connectors on the DAQ16 SOM. Samtec IsoRate connectors are used to preserve the wide analog bandwidth for use in wideband and direct sampling applications.

The ADC and DAC devices are implemented directly on the FPGA die replacing gigabit transceiver tiles and are directly addressable by the logic fabric. In the standard logic provided in the BSP, the A/Ds have an interface component that receives the data, provides digital error correction (y=mx+b linearization), and a FIFO memory for buffering. The trigger manager within the firmware affords precise control over the collection of data. Trigger modes include frames of programmable size, continuous, external and software. Multiple cards can sample simultaneously by using external trigger inputs. The trigger component in the logic can be customized in the logic to accommodate new triggering requirements, should they arise. A non-volatile ROM on the card is used to store the calibration coefficients for the analog and is programmed during factory test.

FPGA Core

The DAQ16 employs a Zynq Ultrascale+ RFSoC for DSP and control. This system-on-chip FPGA is capable of over 8.2 TeraMACs with over 4200 DSP elements. In addition to the raw processing power, the FPGA fabric integrates logic, memory and connectivity features that make the FPGA capable of applying this processing power to virtually any algorithm and sustaining performance in real-time. The FPGA has direct access to one 64-bit bank of DDR4 RAM. This memory allows the FPGA working space for computation, required by DSP functions like FFTs, and bulk data storage needed for system data buffering and algorithms like Doppler delay. An Axi DMA multiple-queue controller component will be used to coordinate multiple data buffers in the DRAM that is used for system data buffering and algorithm support.

All IO, memory and host interfaces connect directly to the FPGA – providing direct connection to the data and control for maximum flexibility and performance. Firmware for the FPGA completely defines the data flow, signal processing, controls and host interfaces, allowing complete customization of the module functionality. Logic utilization of the standard Framework Logic is <15% of the device.

QuadMesh Host Interface

The DAQ16 architecture delivers ~ 64 Gbps sustained data rates over QuadMesh using the Aurora protocol. Packet systems can be implemented atop Aurora as an application interface layer to provide efficient, flexible inter-board transfers at high data rates. Typical packet data systems control the flow of packets using a credit system managed in cooperation with the mesh supervisor software.

The module has 16 high speed serial data links present on the HD connector. These are exposed via OcuLink connectors on the expansion carrier for system interconnect, operating at up to 16 Gbps per link, full duplex. These links enable modules to integrate into switched fabric systems to create powerful computing and signal processing architectures. The standard logic uses these lanes as two bonded Aurora ports of 2 lanes each. Other protocols such as sFPDP could be implemented in the FPGA.

Digital IO

48 digital lines are routed directly from the FPGA as length-matched differential pairs. These signals originate in the I/O FPGA banks, supporting operation conformant with the 1.8V I/O standard. These are useful for implementing low-latency state signaling, or interfacing to custom hardware devices via I2C, SPI or other common serial or parallel standards. 24 additional digital lines are routed from the PS as length-matched single-ended 3.3V signals.

Elk Solutio	ons • phone 805.334.0314	 www.elkengineering.com 	10 of 15
-------------	--------------------------	--	----------

Module Management

The module has facilities for temperature monitoring within the FPGA die. The temperature sensor is monitored by a dedicated system monitor IP, so that power shuts when a critical temperature is exceeded. This function is independent of the FPGA but resident on-chip.

FPGA Configuration

The module uses a QSPI parallel FLASH memory to configure the Ultrascale+ RFSoC FPGA image. This FLASH can be programmed in-system using a supplied software applet.

During development, the JTAG interface to the FPGA may be used for development tools. The FPGA JTAG connector may be controlled using inexpensive USB Digilent debug aids providing compatibility with the Xilinx Platform USB Cable. However more commonly and conveniently, the target may boot PetaLinux and an ethernet connection used to facilitate insystem debugging via the Xilinx target communication framework (TCF).

DAQ16 clocking topology

The DAQ16 supports heterogeneous ADC/DAC rates as shown in the figure below.

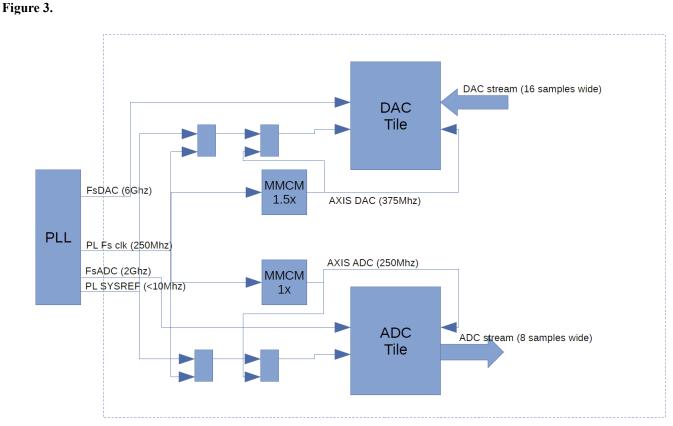


Figure 1: Clocking topology

The DAQ16 employs three PLLs to synthesize various clocks needed throughout the system. The first stage PLL is an LMK04832 which integrates two VCOs. Nine outputs from this PLL are used as follows:

Output	Purpose
0	ADC_225_CLK (Tile1)
2	ADC_224_CLK (Tile0)
4	ADC_227_CLK (Tile3)
6	ADC_226_CLK (Tile2)
7	SYSREF_PL
8	LMX_2594B (Reference to LMX, which clocks DAC tiles 2, 3)
10	LMX_2594A (Reference to LMX, which clocks DAC tiles 0, 1)
12	FS_CLK (FPGA state machine clock which services ADC and DAC tiles)
13	SYSREF_IN

cl Console Messages Log		Timing	
Q ¥ 🕈 C 📕	Summary		
Settings Summary (18.068 W, Margin: NAA) Power Supply Utilization Details Herrarchical (1.4.0.1 W) Clocks (0.853 W) • Signals (0.407 W) Data (0.378 W) Clock Inable (0.018 W) Set/Reset (0.011 W) Set/Reset (0.011 W) INAW (0.264 W) URAW (0.264 W) URAW (0.264 W) URAW (0.273 W) PEACC (3.371 W) RESAC (1.371 W) RESAC (1.372 W) OS (0.090 W) Clock Manager (0.395 W) W (0.706 W) GTV (3.888 W) PS (1.955 W)	Pover analysis from implemented netist. Activity derived from files. simulation files or vectorless analysis. Tetal On-Chip Power: 1 6.066 W Design Power Budget: Not Specified Power Budget Margin: N/A Junction Temperature: 37.3°C Thermal Margin: 62.3°C (70.2 W) Effective B/A 0.0°C (70.0 °C (70.0 °C) Power supplied to off-chip devices: 0 W Confidence level: Low Lumbrith Device Construct Addesig: to find and fix invalid switching activity	91%	Bytamic 14.610 W (92%) 9% Clocks: 0.853 W (91%) 9% Clocks: 0.853 W (91%) 9% Clocks: 0.854 W (91%) 9% Clocks: 0.854 W (91%) 9% Clocks: 0.854 W (91%) 9% Dramic 0.564 W (91%) 9% Dramic 0.564 W (91%) 9% Dramic 0.564 W (91%) 9% Dramic 0.594 W (21%) 9% MatAsts 5.223 W (21%) 9% MatAsts 0.217 W (11%) 9% MatAsts 0.211

Power Dissipation

Power dissipation is heavily dependent on the firmware implementation. Typically, using more SERDES channels, more ARM cores and enabling RFdc core will increase power consumption.

The Xilinx power estimator for the supplied firmware design predicts baseline module power consumption to be approximately 16W and to increase modestly when either the the SERDES or RFdc cores are switched at full frequency.

atmly Zyng UltraScale+ RFSoC 39.5 W 59.5 W 59.5 W ackage xcZu390R xs5977 39.5 W 91% 98.5 W Junction Temperature 64.2 °C 51% 91% 98.5 W 91%	Import File	Export File Quick Estimation	ate Mana	ge IP	Snapshot		Set Default Rates	Reset to	
Device amily Zynq UltraScale + RF36C xx2zy390R Total On-Chip Power 39.5 W atkage FSWF1760 pred Grade 2 emp Crade 1000 mdustrial 0.3000 roccass Typical oragen 60 Vices 0.3000 conserver 00 Vices	Project		Confidence Le	vel Low - E	arly Estimatio	in	Last U	pdated: 6/26	6/2019
Total On-Chip Power 39.5 W 0 <td>U</td> <td></td> <td></td> <td></td> <td> Su</td> <td>mma</td> <td>ry</td> <td></td> <td></td>	U				Su	mma	ry		
Sevice Xz2U390R Image: Sevience of the sevience of th		Device	Total On-C	hip Power	39.5 V	v	0% • T	ranscelver	0.000W
Carcol Ac20330N ackage FSVF1760 peed Grade -2 emp Grade -2 emp Grade -2 emp Grade -2 emp Grade -2 indicator Production (= 15% accuracy) Create and dustrial		Zynq UltraScale+ RFSoC					5% • M	0	1.809W
Deced Grade Of Trob Data and trained Datand and and trained		XCZU39DR					91% • p	S+FPGA Dyn.	35.897W
Emp Grade Industrial Or Chip Power Of Chip Power Power Supplic transcel/viscid		FSVF1760				59.1W	5% •0	evice Static	1.800W
Concess Typical Concess Typical Concess Typical Concess Used Power Maradelization Production (s 15% accuracy) Refarcterization Production (s 15% accuracy) Concess Power Concess Power Used Overmide Power Inction Temperature User Overmide Phane II Temperature PL Obsected on Static Obsected on Small (4"s4") Gold 120 15 Baard Temperature PS Dynamic PS Dynamic 1656 4 Messages MOTAL (All Optical (All Optic		-2	Effective ⊖	JA	0.	7 °C/W	Power supplied to off-chip devices 0.23		0.230W
Charge Div Libradia Power Power Source Voitage Total (A characterization Production (± 15% accuracy) (V) (K)		•					_		
Brancterization Production (± 15% accuracy) Environment Core Inction Temperature Fluer Override Disp 4.256 Disp 4.250 PL O.000 Other 16.73 Other 16.73 Odd Vecasion	Process	Typical			_				
Clock Clock <th< td=""><td></td><td></td><td>Reso</td><td></td><td></td><td></td><td></td><td>_</td><td>_</td></th<>			Reso					_	_
Environment metor Temperature mbeent Temperature frective QJA User Override 25.0 °C PL DOR 25.0 °C PL 939 25 BRZAM Vocasult Vocasult 0.650 0.650 BRZAM 1.057 33 0.57 4.250 11 Mich DSP 4.250 11 0.660 0.660 Mich DSP 4.250 11 0.660 0.660 Ord DSP 4.250 11 0.060 0.660 Ord DSP 4.250 11 0.060 0.060 Ord DSP 4.250 11 0.060 0.070 Vocasult 0.000 0.257 11 0.000 0.257 12.00 0.440 0.000 0.012 Vocasult 1.800 0.217 1.200 0.441 0.000 0.012 Vocasult 1.800 0.021 Vocasult 1.800 0.012 Vocasult 1.800 0.000 0.012 Vocasult 1.800 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000	Characterization	Production (± 15% accuracy)							
Inclining Function							V _{CCINT_IO}		0.571
Distant Temp 25 0 °C feective QJA Г User Override mbient Temp 25 0 °C feective QJA Г User Override mbient Temp 25 0 °C feective QJA Г User Override phannic PLL 0.227 PL 0.305 1 Other 167.735 42 MCM 0.000 0 oard Selection Small (4"x4") 0 0/B Board Layers 12 to 15 0/B Board Temperature 0 pL Implementation PL PL Implementation PL Static 0 144 PL Static 1 1666 4 MCTVAvic 0.900 0 MCTVAvic 0.900 0 PL Limplementation PL Static 0 144 MCTVAvic 0.900 0 MCTVAvic 0.900 0 MCTVAvic 0.900 0 MCTVAvic 0.900 0 MCTVAvic							VCCBRAM		0.165
Core phase PLL 0.227 1 MACM 0.305 1 0.002 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.562</td>									0.562
Image: Sink big Upphamic MMCM 0.305 1 Offset 05A 52.3 (O) 1.000 0.213 Oad Selection Small (4"54") URAM 0.000 0.213 Wood 124 voor 124 Voor 124 Voor 124 Voor 124 Voor 124 OdB Board Temperature 0 1.000 0 Voor 124 Voor 124 PL Implementation Power Optimization PS Dynamic PS 0.644 2 Static 0.144 0 Messages Voor 124 1.000 1.000 Voor 124 0.000 Voor 124			Core						0.435
Bits Loo G Conternation Conternation <t< td=""><td></td><td></td><td>Dynamic</td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>			Dynamic			1			
OSA Comparing the second					•				
Bit Mail (4"x4") URAM 0.000 U 0.08 0.000 1.009 0 Board Layers 0.000 0 1.009 0 Board Layers 0.000 0 1.009 0 Board Lemperature 0 0.000 0 Veco 1.35 1.350 Board Temperature 0 0 0.000 0 1.000 0 Sage/Optimization PL Static 0.144 0									0.212
# of Board Layers 12 to 15 VO 1809 5 OJB O 1809 5 Vcco 1.2V 1200 0.445 Board Temperature OTV 0.000 0 - <									
OJB Transceiver 0.00 0 0.00 0 Board Temperature PS Dynamic PS 0.000 <									
Board Temperature Transceiver GTV 0.000 0 PL Implementation PS Dynamic PS 0.684 2 Static 0.144 0 1.656 4 Messages Month August 1.00 Month August 1.00 Month August 1.00 Month August 1.00		12 to 15	I/O	10	1.809	5			0.449
PL Implementation PS Dynamic PS 0.684 2 Static 0.144 0 PL Static 1.656 4 Messages 0.900 MGTW2cc 0.900 Vcccc 1.800 0.000			Transceive				Vcco 1.0V	1.000	
PL Implementation Static 0.144 0 sage/Optimization PL Static 1.655 4 Messages MOTVV:sur 1.800 Viccocc 1.800	Board Temperature								
sage/Optimization PL Static 0.143 0 Messages 1655 4 MGTVAcce 1.800 Vexue 1.800 MGTVACce 0.900 MGTVACce 1.800	DL Inerel	omontotion		C <u>PS</u>			RFADC-L	DAC Power I	Rails
Messages 1.800 MGTVAVIT 1.200 Vcccc 1.800 0.000							· ·		
Messages 0.900 MGTYAV ₂₀ 0.900 MGTYAV ₂₇ 1.200 V _{CEVOC} 1.800 0.000	Sage/Optimization	. Swer Optimization	F L Stati	~	1.006	4	MGTYVocaux	1.800	
VcAcc 1.800 0.000									
	Messages						MGTYAV _{TT}	1.200	
PS Power Rails									0.008
							PS	Power Rails	

Ironically, the Xilinx power estimator for the same design predicts 39.5W on-chip power use.

The Xilinx tools have many "knobs and levers" that can be adjusted, definitively indicating that the power consumption will range somewhere between **16 and 40W**! Obviously, that's a very wide range and these tools are insufficient to help plan your design.

When generating sine waves on all DACs and capturing from all ADCs, the SOM+carrier draws

Voltage at test point VPWR I: 0.26VCurrent = (VPWRI/20)/.005 = 2.6ASupply Voltage: 12.17VPower = IV = 2.6A * 12.17V = 31.64W

The RFSoCs report a die temperature of \sim 55C throughout the test, with the active heatspreader attached. But bear in mind that none of the Aurora channels were in use during that test.

Software Tools

Software development tools for the module provide comprehensive support via C++ libraries, including device drivers, data buffering, card controls, and utilities that allow developers to be productive from the outset. At the most fundamental level, the software tools deliver data buffers to application code without the burden of low-level real-time control of the cards. Software classes provide a powerful, high-level interface to the card that makes real-time, high speed data acquisition easier to integrate into applications.

Support for the GNU C++ toolchain is provided by the Xilinx SDK. The target ARM processors run a 64-bit variant of Petalinux, source for which is supplied within the BSP.

Elk Solutions • phone 805.334.0314 • www.elkengineering.com 13 of 15

Logic Tools

High speed DSP, analysis, customized triggering and other unique features may be added to the module by modifying the logic. The Board Support Package (BSP) tool provides support for RTL development. The standard logic provides a hardware interface layer that allows designers to concentrate on the application-specific portions of the design. Designer can build upon the Innovative components for packet handling, hardware interfaces and system functions, the Xilinx IP core library, and third party IP. RTL source for the BSP is provided for customization. Each design is provided as a Xilinx Vivado project, with a testbench illustrating logic functionality.

DAQ16 Device Specifications IMPORTANT NOTICES

Elk Solutions reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Elk Solutions's terms and conditions of sale supplied at the time of order acknowledgment.

Elk Solutions warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Elk Solutions's standard warranty. Testing and other quality control techniques are used to the extent Elk Solutions deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Elk Solutions assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Elk Solutions products. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Elk Solutions does not warrant or represent that any license, either express or implied, is granted under any Elk Solutions patent right, copyright, mask work right, or other Elk Solutions intellectual property right relating to any combination, machine, or process in which Elk Solutions products or services are used. Information published by Elk Solutions regarding third-party products or services does not constitute a license from Elk Solutions to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Elk Solutions under the patents or other intellectual property of Elk Solutions.

Reproduction of information in Elk Solutions data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice.

Elk Solutions is not responsible or liable for such altered documentation. Resale of Elk Solutions products or services with statements different from or beyond the parameters stated by Elk Solutions for that product or service voids all express and any implied warranties for the associated Elk Solutions product or service and is an unfair and deceptive business practice. Elk Solutions is not responsible or liable for any such statements.

For further information on Elk Solutions products and support see our web site:

www.elkengineering.com

Mailing Address: Elk Solutions, LLC.

12708 Misty Grove St, Moorpark, CA 93021

Copyright ©2019, Elk Solutions, Incorporated